convert
#
Convert OpenFF ForceField <--> smee TensorForceField.
Functions:
-
convert_to_smirnoff–Convert a tensor force field that contains bespoke valence parameters to
-
parameterise–Prepare a Trainable object that contains a force field with
-
linearise_harmonics_force_field–Linearize the harmonic potential parameters in the forcefield.
-
linearise_harmonics_topology–Linearize harmonic potential parameters in the topology.
_reflect_angle
#
convert_to_smirnoff
#
Convert a tensor force field that contains bespoke valence parameters to SMIRNOFF format. Args: ff: The force field containing the bespoke valence terms. base: The (optional) original SMIRNOFF force field to add the bespoke parameters to. If no specified, a force field containing only the bespoke parameters will be returned. Returns: A SMIRNOFF force field containing the valence terms of the input force field.
Source code in presto/convert.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | |
parameterise
#
parameterise(
settings: ParameterisationSettings,
device: TorchDevice = "cuda",
) -> tuple[
list[Molecule],
ForceField,
list[TensorTopology],
TensorForceField,
]
Prepare a Trainable object that contains a force field with unique parameters for each topologically symmetric term across multiple molecules.
Parameters:
-
settings(ParameterisationSettings) –The settings for the parameterisation.
-
device(TorchDevice, default:'cuda') –The device to use for the force field and topology.
Returns:
-
mols(list[Molecule]) –The molecules that have been parameterised.
-
off_ff(ForceField) –The original force field, used as a base for the bespoke force field.
-
tensor_tops(list[TensorTopology]) –The topologies of the molecules.
-
tensor_ff(TensorForceField) –The force field with unique parameters for each topologically symmetric term.
Source code in presto/convert.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | |
_expand_torsions
#
Expand the torsion potential to include K0-4 for proper torsions
Source code in presto/convert.py
_add_angle_within_range
#
Add a difference to an angle cap to be within [0, pi]
Source code in presto/convert.py
_compute_linear_harmonic_params
#
_compute_linear_harmonic_params(
k: float,
eq_value: float,
compute_lower_bound: Callable[[float], float],
compute_upper_bound: Callable[[float], float],
) -> tuple[float, float, float, float]
Compute linearized harmonic parameters from standard parameters.
This generic function distributes a force constant across two bounds, inversely proportional to the distance from each bound.
Args: k: Force constant (e.g., kcal/mol/Ų or kcal/mol/rad²) eq_value: Equilibrium value (e.g., bond length or angle) compute_lower_bound: Function that takes eq_value and returns lower bound compute_upper_bound: Function that takes eq_value and returns upper bound
Returns: Tuple of (k1, k2, eq1, eq2) where: - k1, k2: Distributed force constants - eq1, eq2: Lower and upper equilibrium value bounds
Source code in presto/convert.py
_linearize_bond_parameters
#
Linearize bond potential parameters.
Converts standard harmonic bond parameters (k, length) to linearized form (k1, k2, b1, b2) where the equilibrium bond length range is [0.5length, 1.5length].
Source code in presto/convert.py
_linearize_angle_parameters
#
Linearize angle potential parameters.
Converts standard harmonic angle parameters (k, angle) to linearized form (k1, k2, angle1, angle2) where the equilibrium angle range is [0, π].
Source code in presto/convert.py
linearise_harmonics_force_field
#
Linearize the harmonic potential parameters in the forcefield.
This converts Bonds and Angles potentials to their linearized forms (LinearBonds and LinearAngles) for more robust optimization.
Source code in presto/convert.py
linearise_harmonics_topology
#
linearise_harmonics_topology(
topology: TensorTopology, device_type: TorchDevice
) -> TensorTopology
Linearize harmonic potential parameters in the topology.
This updates the topology to use LinearBonds and LinearAngles parameter maps instead of Bonds and Angles.