al
#
    Classes:
- 
          
TanimotoKernel–Custom Gaussian process kernel that computes Tanimoto similarity.
 - 
          
Query– 
            TanimotoKernel
#
TanimotoKernel()
              Bases: NormalizedKernelMixin, StationaryKernelMixin, Kernel
Custom Gaussian process kernel that computes Tanimoto similarity.
Methods:
- 
            
__call__–Computes the pairwise Tanimoto similarity.
 
Source code in fegrow/al.py
                    42 43  |  | 
            __call__
#
__call__(X, Y=None, eval_gradient=False)
Computes the pairwise Tanimoto similarity.
Parameters:
- 
            
X–Numpy array with shape [batch_size_a, num_features].
 - 
            
Y–Numpy array with shape [batch_size_b, num_features]. If None, X is used.
 - 
            
eval_gradient–Whether to compute the gradient.
 
Returns:
- 
          –
          
Numpy array with shape [batch_size_a, batch_size_b].
 
Raises:
- 
              
NotImplementedError–If eval_gradient is True.
 
Source code in fegrow/al.py
              45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64  |  | 
            Query
#
    Methods:
- 
            
Greedy–Takes the best instances by inference value sorted in ascending order.
 - 
            
PI–Maximum PI query strategy. Selects the instance with highest probability of improvement.
 - 
            
EI–Maximum EI query strategy. Selects the instance with highest expected improvement.
 - 
            
UCB–Maximum UCB query strategy. Selects the instance with highest upper confidence bound.
 
            Greedy
  
      staticmethod
  
#
Greedy() -> Callable
Takes the best instances by inference value sorted in ascending order.
Returns:
- 
              
Callable–The greedy function.
 
Source code in fegrow/al.py
              68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91  |  | 
            PI
  
      staticmethod
  
#
PI(tradeoff: float = 0) -> Callable
Maximum PI query strategy. Selects the instance with highest probability of improvement.
Parameters:
- 
            
tradeoff(float, default:0) –Value controlling the tradeoff parameter.
 
Returns:
- 
              
Callable–The function with pre-populated parameters.
 
Source code in fegrow/al.py
              93 94 95 96 97 98 99 100 101 102 103 104  |  | 
            EI
  
      staticmethod
  
#
EI(tradeoff: float = 0) -> Callable
Maximum EI query strategy. Selects the instance with highest expected improvement.
Parameters:
- 
            
tradeoff(float, default:0) –Value controlling the tradeoff parameter.
 
Returns:
- 
              
Callable–The function with pre-populated parameters.
 
Source code in fegrow/al.py
              106 107 108 109 110 111 112 113 114 115 116 117  |  | 
            UCB
  
      staticmethod
  
#
UCB(beta: float = 1) -> Callable
Maximum UCB query strategy. Selects the instance with highest upper confidence bound.
Parameters:
- 
            
beta(float, default:1) –Value controlling the beta parameter.
 
Returns:
- 
              
Callable–The function with pre-populated parameters.
 
Source code in fegrow/al.py
              119 120 121 122 123 124 125 126 127 128 129 130  |  |