al
#
Classes:
-
TanimotoKernel
–Custom Gaussian process kernel that computes Tanimoto similarity.
-
Query
–
TanimotoKernel
#
TanimotoKernel()
Bases: NormalizedKernelMixin
, StationaryKernelMixin
, Kernel
Custom Gaussian process kernel that computes Tanimoto similarity.
Methods:
-
__call__
–Computes the pairwise Tanimoto similarity.
Source code in fegrow/al.py
42 43 |
|
__call__
#
__call__(X, Y=None, eval_gradient=False)
Computes the pairwise Tanimoto similarity.
Parameters:
-
X
–Numpy array with shape [batch_size_a, num_features].
-
Y
–Numpy array with shape [batch_size_b, num_features]. If None, X is used.
-
eval_gradient
–Whether to compute the gradient.
Returns:
-
–
Numpy array with shape [batch_size_a, batch_size_b].
Raises:
-
NotImplementedError
–If eval_gradient is True.
Source code in fegrow/al.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
Query
#
Methods:
-
Greedy
–Takes the best instances by inference value sorted in ascending order.
-
PI
–Maximum PI query strategy. Selects the instance with highest probability of improvement.
-
EI
–Maximum EI query strategy. Selects the instance with highest expected improvement.
-
UCB
–Maximum UCB query strategy. Selects the instance with highest upper confidence bound.
Greedy
staticmethod
#
Greedy() -> Callable
Takes the best instances by inference value sorted in ascending order.
Returns:
-
Callable
–The greedy function.
Source code in fegrow/al.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
PI
staticmethod
#
PI(tradeoff: float = 0) -> Callable
Maximum PI query strategy. Selects the instance with highest probability of improvement.
Parameters:
-
tradeoff
(float
, default:0
) –Value controlling the tradeoff parameter.
Returns:
-
Callable
–The function with pre-populated parameters.
Source code in fegrow/al.py
93 94 95 96 97 98 99 100 101 102 103 104 |
|
EI
staticmethod
#
EI(tradeoff: float = 0) -> Callable
Maximum EI query strategy. Selects the instance with highest expected improvement.
Parameters:
-
tradeoff
(float
, default:0
) –Value controlling the tradeoff parameter.
Returns:
-
Callable
–The function with pre-populated parameters.
Source code in fegrow/al.py
106 107 108 109 110 111 112 113 114 115 116 117 |
|
UCB
staticmethod
#
UCB(beta: float = 1) -> Callable
Maximum UCB query strategy. Selects the instance with highest upper confidence bound.
Parameters:
-
beta
(float
, default:1
) –Value controlling the beta parameter.
Returns:
-
Callable
–The function with pre-populated parameters.
Source code in fegrow/al.py
119 120 121 122 123 124 125 126 127 128 129 130 |
|
_dask_tanimito_similarity
#
_dask_tanimito_similarity(a, b)
Fixme this does not need to use matmul anymore because it's not a single core. This can be transitioned to simple row by row dispatching.
Source code in fegrow/al.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
|